
virus

May 18, 2020

1 Comparison of Infection Rates and Mortality Rates between
Influenza and SARS-Cov-2 in the United States

1.1 Introduction

Sometime in November of 2019, Chinese hospitals in the province of Hubei began admitting patients
who were displaying symptoms of Pneumonia. At first it is likely that doctors in these hospitals
assumed that the uptick in Pneumonia cases were due to influenza infections; however, the patients
began dying at a rate that exceeded the expected case fatality rates of most known strains of
Pneumonia. Within a month it became clear that Chinese patients suffering from the effects of
Pneumonia were either infected with a new strain of the flu, or a completely differnt pathogen
altogether.

Unfortunately due to the communist nature of the Chinese government, this new outbreak was
hidden from most of the world until early January, and even then information was slow to percolate
two western media sources and epidemiologists. By the time the Chinese goverment made public
the existance of this new pathogen, it had already spread to Europe, Asia and North America.
European and Asian governments as well as governments in the America’s were given little time to
react to this new pathogen that appeared to have an infection rate and mortality rate that exceeded
that of common influenza variants and possibly rivaled that of the Spanish Flu, which caused a
global pandemic in 1918.

By the 7th of January, 2020, the Chinese goverment identified the pathogen responsible for the large
increase in Pneumonia patients. The pathogen was identified to be a type of a Coronavirus, similar
to the pathogens responsible for the 2003 SARS outbreak in China and the 2012 MERS outbreak
in the middle east and Korea. The new Coronavirus has been commonly referred to as COVID 19,
which stands for the Coronavirus Identification Year 2019; however, the formal idenfitication for
this new virus is SARS-Cov-2.

As of the date of this report, epidemiologists across the globe are working at a fevered pace to
understand the new Coronavirus. Doctors endeavor to understand the virus genome, its tramission
methods, transmission rates, and how it interacts with infected hosts. Unfortunately the modern
transporation infrastructure, combined with modern population densities, and the secrecy of the
Chinese goverment has put the world at a disadvantage with respect to combatting this new illness.
By the time the rest of the world was made aware of SAR-Cov-2, the virus had already spread
to most places in the world where a rigorous transportation architecture was in place. The World
Health Organization (WHO) declared the SARS-Cov-2 outbreak a pandemic on March 11th, 2020,
which represents a global recognition of the severity of this disease. Currently the United States

1

https://www.cdc.gov/sars/index.html
https://www.cdc.gov/coronavirus/mers/about/index.html

Center for Disease Control (CDC) maintains a website where American citizens and citizens of
most other countries can stay apprised of all relevant information regarding this new pathogen.

As of the date of this report, on March 22nd, 2020, over 169 countries and regions have reported
SARS-Cov-2 related infections and deaths. However, the reported infection and mortality rates
vary greatly between the various affected countries, with mortality rates that differ by more than
an order of magnitude. As with any other pathogen, the societal response to the illness should be
proportional to the risk of aquiring the illness and the consequences if infected. An under-reaction
to a virus such as SARS-Cov-2 could cost tens of thousands, and possibly even millions of lives.
However, an over-reaction to the illness can drive an economic recession, which could also cost tens
of thousands to millions of lives through the detrimental effects of poverty.

1.2 Background

The United States Center for Disease Control (CDC) has been collecting data on influenza infections
dating back to the 1997-1998 flu season. Since 1997, the United States has kept records of patients
infected with the A (H1) and A (H3) influenza subtype’s as well as the common B subtype and
the Victoria as well as the Yamagoto sub types of the B strain. In additon, the United States has
kept records of patients infected with the H3N2V influenza strain and in 2009, there was also an
outbreak of the H1N1 flu type, which was similar to the same illness that caused the Influenza
Pandemic of 1918.

The U.S. government, through the CDC, bases its annual flu response on two metrics, the prob-
ability that a member of society will become infected with the flu (Pi), and the probability that
an infected person will perish due to the influenza infection (Pd), also known as the case fatality
mortality rate. The product of Pi and Pd is known as the mortality rate (Pm). The relationship
between Pm and Pi and Pd.

Pm = Pi × Pd (1)

The value of Pi is a product of the probability that an un-infected person will come into medically
significant contact with an infected person (Pc) and the probability that the un-infected person
will acquire the illness if they come into contact with an individual who is infected (Pii). Medically
significant contact is defined as an interaction between an infected and un-infected individual that
poses a non-zero probability of disease transmission.

Pi = Pc × Pii (2)

The term Pi is largely a function of population density and the transmission method for the illness.
For instance, if an individual lives in an area containing just 0.1 to 1 person per square mile, the
probability of an un-infected individual interacting with someone who is infected with an illness
is very small compared to an un-infected individual living in an area containing 2-10 people per
square mile. However, if the illness can be transmitted over the air and has an aerosol range of half
a mile before the pathogen perishes, the person living in an area with a population density of 0.1
to 1 person per square mile may have a higher probability of acquiring an illness. The terms Pii,
and Pd are a function of an un-infected persons genome, age, and behavioral habits. The genetic
composition of an individual can give that person an immunity to diseases that could otherwise be

2

https://www.cdc.gov/coronavirus/2019-ncov/about/grows-virus-cell-culture.html

very infectuous or fatal to other members of the population. Age is also known to greatly affect the
immune response of patients to illnesses that may otherwise not be of concern people of a different
age. Typically the very young and the elederly population will have a lesser immune response to
a pathogen than those of moderate ages. Finally a persons behavior can also greatly affect their
ability to resist or survive an infection. For instance, people who smoke cigarettes greatly reduce
the ability of their lungs to resist respitory illnesses.

The term Pi serves as an unmitigated risk factor for the flu, since it represents the fraction of
a population that will be put at risk if nothing is done. The term Pd serves as the unmitigated
consequence management term for government planners, since it describes how severe the outcome
will be for the fraction of the population that is put at risk of infection. Once the risk and
consequences are known, planners can weigh the merits of various responses to mitigate the risk
or the consequences, where each response is likely evaluated based on its cost, effectiveness, and
secondary consequences. The secondary consequences of a response to a pathogen cannot
be overlooked, as an over-reaction to a pathogen outbreak can be as harmful to human
life as under-reacting. It is a well established fact that an individuals general health and
mortality is inversly proportional to their economic status. Most stringent measures to contain an
outbreak will have a negative impact on the national and global economy. It is possible that an
effort to contain an outbreak may save lives from a pathogen caused death; however, the long term
economic effects could impoverish enough people that the detrimental effects of economic downturn
results in more deaths than were saved by combatting the virus.

It is impossible to know how many people actually aquire the flu each year, since only those with
severe infections feel the need to go to a hospital where they are officially diagnosed. However,
the United States has a long history of sampling the population to estimate the number of un-
diagnosed influenza patients for each diagnosed patient. Between the 2010-2011 flu season and the
2018-2019 season the CDC estimates that between 9.3 million Americans and 45 million Americans
are infected with influenza each year, with approximately 12,000 to 61,000 flu related fatalities
per year. These figures come from the CDC influenza burden website. This implies values of
Pi = 0.0890 ± 0.0485 and Pd = 0.00132 ± 0.00044 where each number represents a percentage
ranging from 0 to 1. It should be noted that the author of this report is not aware of how the CDC
determines the true number of infections, which could have a very large effect on the values of Pi

and Pd. However, as reported by the CDC, the mortality rate for influenza in the United States
has a value of Pm = 0.00011± 0.000006, which means that an average American citizen has a 1.11
chance in 10,000 of acquiring and dying of influenza, which is well within the risk factor of other
natural causes of death such as automobile accidents, heart disease, etc…

Currently epidemiologists are working to better understand the SARS-Cov-2 virus; however, in
the absense of data, policy makers struggle to determine the appropriate resoonse to the COVID-
19 epidemic. The U.S. CDC as well as the United States National Institute for Allergyies and
Infectious Disease (NIAD) is working to develop estimates for the values of Pc, Pii and therefore
Pi through the combination of modeling and experimental measurements on the SARS-Cov-2 virus
itself; however, these will only be estimates for the infection rates. The true value of the infection
rates will not be known for a very long time, and even once the outbreak is contained, it will
take years to gain an estimate for the number of people who were infected but never diagnosed.
However, we can gain a relatively quick estimate for the value of Pd by monitoring those who have
been formally diagnosed and comparing the numbers of those diagnosed who perished, with the
total number of patients diagnosed. The initial normalized mortality rates (Pd) can be used to guide
a societal response to the virus and should be based on the effects in each nation or region. Each

3

https://www.cdc.gov/flu/about/burden/index.html

regional area has a different population density, genetic composition, age distribution, and average
behavioral pattern. A financial and medical response that makes sense in an Asian country, may
not make sense for a North American country, so the response in each country should be determined
seperately.

1.3 Purpose of this Study

The SARS-Cov-2 outbreak may be the first data-driven pandemic in human history. With exception
of the original Chinese response to the outbreak, infection and mortality data for countries across
the globe is being shared publically, allowing anyone to analyze the data and draw conclusions for
themselves. One of the best examples of data-sharing is the John’s Hopkins Univerity SARS-Cov-2
dahsboard site, which gives users an easy to use interface to track the diseases spread and its effect
on each separate country.

For right or wrong, many people are comparing the SARS-Cov-2 outbreak to a bad influenza season,
and have in default, made the influenza risk and consequences the benchmark for the United States
response to this virus. If the mortality and infection rates are worse than the flu, then the public
largely favors drastic actions to combat the Coronavirus; however, if the risk and consequences are
in the same general ball park, or only slightly worse than the flu, then the public is apprehensive
about drastic actions, which will inevitebly damage the economy.

The purpose of this study is to mine the existing American databases for influenza as well as
the current SARS-Cov-2 databases for the purpose of making relevant comparisons between the
two pathogens. I should mention that the author of this study is not a doctor, virologist, or
an epidemiologist, but is instead an engineer and data scientist. I will endeavor to only make
conclusions that are empircal based on the data provided and not delve into a mechanistic study,
which is beyond the intellectual depth of the author.

1.4 Package Imports and General Code

This document is produced in a Jupyter Lab notebook using the Python 3.6 programming lan-
guage. This document is inherently meant to utylize a programming language within a word
processer environemt to combine the analytical power of computer software with the graphical
display capabilities of a word processor. This document can be read by technical experts as well as
non-technical readers. If a non-technical reader is viewing this document, I recommend that you
skip the code sections and proceed directly to the written sections as well as the plots and tables
that highlight the points being made.

The section below contains code that is used to read in the various databases and that conducts
basic formatting so the data can be used for analysis. In addition, all package imports are listed
in the next section. The actualy analysis begins after the code section below.

[1]: # Package Imports
import pandas as pd
import numpy as np
from matplotlib import rcParams, pyplot as plt
import matplotlib
import matplotlib.dates as mdates

4

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html

from datetime import datetime
from IPython.display import display
from scipy.signal import argrelextrema
import operator
%matplotlib inline

start_date = '1/22/20'
end_date = '5/17/20'

class ReadCovidCumData:
def __init__(self, file: str):

"""

:param file: The file location to include path-length
"""
self.file = file

--

def read_data(self, start_date: str, end_date: str) -> pd.DataFrame:
"""

:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between

the start and end date

This function will read the csv files provided by JHU which contain
the number of infections, deaths and recovered patients per day as
cumulative values
"""
head_dict, headers = self._header_dict(start_date, end_date)
df = pd.read_csv(self.file, usecols=headers, dtype=head_dict)
return df

--

def filter_by_country(self, country: str, start_date: str,
end_date: str) -> pd.DataFrame:

"""

:param country: The country for which data is required
:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between

the start and end date

This function will return a pandas data-frame that filters the
JHU csv files by the country of interest. The country must match

5

the spelling in the JHU .csv files
"""
df = self.read_data(start_date, end_date)
mask = df['Country/Region'] == country
return df[mask]

--

def filter_by_region(self, country: str, region: str,
start_date: str, end_date: str) -> pd.DataFrame:

"""

:param country: The country for which data is required
:param region: The region within the country for which data is required
:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between the

start and end date

This function will return a pandas data-frame that filters the JHU csv
files by the country and region of interest. The country and region
must match the spelling in the JHU .csv files
"""
df = self.read_data(start_date, end_date)
mask = (df['Country/Region'] == country) & (df['Province/State'] ==␣

↪→region)
return df[mask]

==

def _header_dict(self, start_date, end_date):
"""

:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return headers: A dictionary containing the names of all headers

and the data types of each header
"""
dates = self._date_range(start_date, end_date)
headers = ['Province/State', 'Country/Region', 'Lat', 'Long']
dattypes = [str, str, float, float]
for date in dates:

if date[0] == '0' and date[3] == '0':
dat = date[1:3] + date[4:]

elif date[3] == '0':
dat = date[0:3] + date[4:]

elif date[0] == '0':
dat = date[1:]

else:

6

dat = date
headers.append(dat)
dattypes.append(int)

return dict(zip(headers, dattypes)), headers
--

def _date_range(self, start_date, end_date) -> pd.DataFrame:
"""

:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in ht eformat MM/DD/YY
:return dt: A pandas date range covering the days between the

start and end dates
"""
dt = pd.date_range(start=start_date, end=end_date).strftime('%m/%d/%y')
return dt

==
==

class ProcessCovidData(ReadCovidCumData):
def __init__(self, file: str):

"""

:param file: The file location to include path-length
"""
self.file = file
ReadCovidCumData.__init__(self, file)

--

def total_global_cases(self, start_date: str, end_date: str) -> pd.
↪→DataFrame:

"""

:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between

the start and end date

This function will read the csv files provided by JHU which contain
the number of infections, deaths and recovered patients per day as
cumulative values. This function specifically produces a data frame
that only contains the dates and the cumulative number of global␣

↪→infections,
deaths or recovered patients on that day
"""
df = self.read_data(start_date, end_date)

7

df = df.drop(['Province/State', 'Country/Region', 'Lat', 'Long'],␣
↪→axis=1)

df2 = df.sum(axis=0)
df2.index = pd.to_datetime(df2.index, format="%m/%d/%y")
df2.columns = ['index', 'Number']
return df2

--

def total_cases_by_country(self, country: str, start_date: str,
end_date: str) -> pd.DataFrame:

"""

:param country: The country for which data is required
:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between

the start and end date

This function will return a pandas data-frame that filters the
JHU csv files by the country of interest. The country must match
the spelling in the JHU .csv files. The data-frame only contains the
date and the cumulative number of infections, deaths, or recovered
patients on that day in that state
"""
df = self.filter_by_country(country, start_date, end_date)
df = df.drop(['Province/State', 'Country/Region', 'Lat', 'Long'],␣

↪→axis=1)
df2 = df.sum(axis=0)
df2.index = pd.to_datetime(df2.index, format="%m/%d/%y")
df2.columns = ['Number']
return df2

--

def total_cases_by_region(self, country: str, region: str,
start_date: str, end_date: str) -> pd.DataFrame:

"""

:param country: The country for which data is required
:param region: The region within the country for which data is required
:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between the

start and end date

This function will return a pandas data-frame that filters the JHU csv
files by the country and region of interest. The country and region
must match the spelling in the JHU .csv files. The data-frame

8

only contains the date and cumulative number of infections, deaths,
or recovered patients on that day in that state and region
"""
df = self.filter_by_region(country, region, start_date, end_date)
df = df.drop(['Province/State', 'Country/Region', 'Lat', 'Long'],␣

↪→axis=1)
df2 = df.sum(axis=0)
df2.index = pd.to_datetime(df2.index, format="%m/%d/%y")
df2.columns = ['Number']
return df2

--

def global_cases_per_day(self, start_date: str, end_date: str) -> pd.
↪→DataFrame:

"""

:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between

the start and end date

This function will read the csv files provided by JHU which contain
the number of infections, deaths and recovered patients per day as
cumulative values. This function specifically produces a data frame
that only contains the dates and the number of global infections,
deaths or recovered patients produced on that day
"""
df = self.total_global_cases(start_date, end_date)
df = df.diff()
return df.drop(df.index[0])

--

def country_cases_per_day(self, country: str, start_date: str,
end_date: str) -> pd.DataFrame:

"""

:param country: The country for which data is required
:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between

the start and end date

This function will return a pandas data-frame that filters the
JHU csv files by the country of interest. The country must match
the spelling in the JHU .csv files. The data-frame only contains the
date and the number of infections, deaths, or recovered
patients produced on that day in that state

9

"""
df = self.total_cases_by_country(country, start_date, end_date)
df = df.diff()
return df.drop([df.index[0]])

--

def region_cases_per_day(self, country: str, region: str,
start_date: str, end_date: str) -> pd.DataFrame:

"""

:param country: The country for which data is required
:param region: The region within the country for which data is required
:param start_date: The start date in the format MM/DD/YY
:param end_date: The end date in the format MM/DD/YY
:return df: A pandas data-frame containing all information between the

start and end date

This function will return a pandas data-frame that filters the JHU csv
files by the country and region of interest. The country and region
must match the spelling in the JHU .csv files. The data-frame
only contains the date and number of infections, deaths,
or recovered patients produced on that day in that state and region
"""
df = self.total_cases_by_region(country, region, start_date, end_date)
df = df.diff()
return df.drop([df.index[0]])

==
==

class ReadFluInfections:
def __init__(self, file: str):

"""

:param file: The file location to include path-length
"""
self.file = file

--

def read_data(self) -> pd.DataFrame:
"""

:return df: A pandas data-frame containing all flu infection
information

This function will read the csv files provided by the CDC which contain

10

the number of infections per week for the entire range of data␣
↪→collection

"""
headers = ['YEAR', 'WEEK', 'A (2009 H1N1)', 'H3N2v',

'SEASON', 'A (H1+H3)', 'B (B+BVic+BYam)', 'DATE']
data_type = [int, int, int, int, str, int, int, str]
head_dict = dict(zip(headers, data_type))
df = pd.read_csv(self.file, usecols=headers, dtype=head_dict)
df['DATE'] = pd.to_datetime(df['DATE'])
df = df.set_index('DATE')
return df

==
==

class ProcessFluInfections(ReadFluInfections):
def __init__(self, file: str):

"""

:param file: The file location to include path-length
"""
self.file = file
ReadFluInfections.__init__(self, file)

--

def filter_by_season(self, season: str) -> pd.DataFrame:
"""

:param season: The flu season for which the user desires information.
The season should be in a YYYY-YYYY format

:return df: A pandas data-frame containing the flu infections data for
the season entered by the user

"""
df = self.read_data()
mask = df['SEASON'] == season
return df[mask]

==
==

class ReadFluMortality:
def __init__(self, file: str):

"""

:param file: The file location to include path-length
"""
self.file = file

11

--

def read_data(self) -> pd.DataFrame:
"""

:return df: A pandas data-frame containing all flu mortality
information

This function will read the csv files provided by the CDC which contain
the number of deaths per week for the entire range of data collection
"""
headers = ['SEASON', 'WEEK', 'NUM INFLUENZA DEATHS',

'NUM PNEUMONIA DEATHS', 'DATE', 'TOTAL DEATHS',
'PERCENT P&I']

data_type = [str, int, int, int, str, int, float]
head_dict = dict(zip(headers, data_type))
df = pd.read_csv(self.file, usecols=headers, dtype=head_dict)
df['DATE'] = pd.to_datetime(df['DATE'])
df = df.set_index('DATE')
return df

==
==

class ProcessFluMortality(ReadFluMortality):
def __init__(self, file):

"""

:param file: The file location to include path-length
"""
self.file = file
ReadFluMortality.__init__(self, file)

--

def filter_by_season(self, season: str) -> pd.DataFrame:
"""

:param season: The flu season for which the user desires information.
The season should be in a YYYY-YYYY format

:return df: A pandas data-frame containing the flu mortality data for
the season entered by the user

"""
df = self.read_data()
mask = df['SEASON'] == season
return df[mask]

==
==

12

def convert_to_m_d(df: pd.DataFrame) -> pd.date_range:
"""

:param df: A pandas data-frame containing pathogen information
:return dates: A pandas date_range list ona. week by week basis

This function is used to produce a date list for flu dataframes so
they can be plotted on the same axis
"""
dates = pd.date_range(start='2020-01-10', periods=len(df), freq='W')
return dates

1.5 Databases

1.5.1 Influenza Infection Rates

The estimated number of influenza infections on a per week basis is extracted from the USCDC
Flu View website. The CDC influenza infection database only accounts for patients that were
formally diagnosed at a hospitals or primary care providers. For every diagnosed patient, their can
be a substaintially large number of un-diagnosed infected people. In addition, those displaying the
symptoms of influenza caused pnemonia may be classified as having pneumonia and not influenza.
The CDC influenza database does not describe the total number of influenza infected patients in
the United States, but can still give valuable insights into how the flu seasons and flu outbreaks
progress as a function of time. The time progression information for influenza may also be used as
an analog fo other pathogens while researchers collect data specific to the new pathogen.

The CDC Flu View website will provide a user with a zip file containing four .csv files. The
files relevant to influenza infection rates are titled WHO_NREVSS_Combined_prior_to_2015_16.csv
and WHO_NREVSS_Public_Health_Labs.csv. Stating in the 2007-2008 influenza season the CDC
collected data on the number of patients infected on a week by week basis, where the number
of infections were classified by those infected with H1N1 strain, those infected with the A (H1)
strain-subtype, the A (H3) strain-subtype, the H3N2v strain, the B strain, as well as those who
were infected with the A strain, but subtyping was not performed, and those infected with the A
strain; however, the subtype could not be determined. The CDC continued to collect influenza
data in this format until the end of the 2014-2015 season and have placed the information in
the WHO_NREVSS_Combined_prior_to_2015_16.csv file. Starting in the 2015-2016 flu season, the
CDC changed their data collection format to classify infections by those infected with the H1N1
strain, the A (H3) strain-subtype, those who were infected with the A strain but subtyping was
not performed, those with the B strain, Victoria subtype of the B strain, those with the Yamagoto
subtype of the B strain, and those with H3N2v. The results of data collection between the 2015-
2016 flu season to present day are stored in the file titled WHO_NREVSS_Public_Health_Labs.csv.
In both data sets the flu season is assumed to begin on the 40th week of each year and end on the
39th week of the following year.

In order to simplify the access of data for all influenza seasons starting in 1997 to present, the files
are combined into a single single .csv file titled US_Flu_Infections.csv. In order to combine

13

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

the different collection formats into one intelligible database, we will combine all A type infections,
including those which could not be subtypes or were not subtyped into one classification. In
addition, all B strain infections are combined into one classification, and the H3N2v and H1N1
strains are maintained as their own seperate classification. The code shown below reads in the raw
data from the CDC and transforms it into a single .csv file titled US_Flu_Infections.csv. In
addition to the data-wrangling mentioned in the paragraphs above, a date in the format mm/dd/yy
is given to each week.

[2]: # Read WHO_NREVSS_Combined_prior_to_2015_16.csv file
file = 'Data/Raw_Data/WHO_NREVSS_Combined_prior_to_2015_16.csv'
columns = ['YEAR', 'WEEK', 'A (2009 H1N1)', 'A (H1)', 'A (H3)',

'A (Subtyping not Performed)', 'A (Unable to Subtype)',
'B', 'H3N2v']

dattype = [int, int, int, int, int, int, int, int, int]
headers = dict(zip(columns, dattype))
df = pd.read_csv(file, skiprows=[0], usecols=columns, dtype=headers)

Add SEASON column
season = []
for i in range(len(df)):

if df['WEEK'][i] >= 40 and df['WEEK'][i] <= 53:
start = df['YEAR'][i]
end = df['YEAR'][i] + 1
val = str(start) + '-' + str(end)
season.append(val)

else:
start = df['YEAR'][i] - 1
end = df['YEAR'][i]
val = str(start) + '-' + str(end)
season.append(val)

df['SEASON'] = season

Add columns for combined A types and drop all irrelevant columns
df['A (H1+H3)'] = df['A (H1)'] + df['A (H3)'] + df['A (Subtyping not␣
↪→Performed)'] + \

df['A (Unable to Subtype)']
df['B (B+BVic+BYam)'] = df['B']

df = df.drop(['A (H1)', 'A (H3)', 'A (Subtyping not Performed)',
'A (Unable to Subtype)', 'B'], axis=1)

Create a date series for this data set
dates = pd.date_range(start='28/9/97', end='28/9/15', freq='W').strftime('%m/%d/
↪→%y')

df['DATE'] = dates
==
==

14

Read WHO_NREVSS_Public_Health_Labs.csv file
file = 'Data/Raw_Data/WHO_NREVSS_Public_Health_Labs.csv'
columns = ['YEAR', 'WEEK', 'A (2009 H1N1)', 'A (H3)',

'A (Subtyping not Performed)', 'B', 'BVic',
'BYam', 'H3N2v']

dattype = [int, int, int, int, int, int, int, int, int]
headers = dict(zip(columns, dattype))
df2 = pd.read_csv(file, skiprows=[0], usecols=columns, dtype=headers)

Add SEASON column
season = []
for i in range(len(df2)):

if df2['WEEK'][i] >= 40 and df2['WEEK'][i] <= 53:
start = df2['YEAR'][i]
end = df2['YEAR'][i] + 1
val = str(start) + '-' + str(end)
season.append(val)

else:
start = df2['YEAR'][i] - 1
end = df2['YEAR'][i]
val = str(start) + '-' + str(end)
season.append(val)

df2['SEASON'] = season

Add columns for combined A types and drop all irrelevant columns
df2['A (H1+H3)'] = df2['A (H3)'] + df2['A (Subtyping not Performed)']
df2['B (B+BVic+BYam)'] = df2['B'] + df2['BVic'] + df2['BYam']

df2 = df2.drop(['A (H3)', 'A (Subtyping not Performed)',
'B', 'BVic', 'BYam'], axis=1)

==
==

Create a date series for this data set
dates = pd.date_range(start='10/04/15', end='03/13/20', freq='W').strftime('%m/
↪→%d/%y')

df2['DATE'] = dates

Join the dataframes into one
df3 = pd.concat([df, df2])
df3.to_csv('Data/Processed_Data/US_Flu_Infections.csv', index=False)

15

1.5.2 Influenza Mortality Rates

The mortality rate assumed to have been caused by influenza infections in the United States can
be found on the CDC Flu View website in a file titled National_Custon_Data.csv. The .csv
file contains the total number of people who die in the United States each week as well as the
fraction that expire due to influenza as well as the fraction of those who expire due to pneumonia
and influenza, the assumption being that the pneumonia may have been a complication due to an
influenza infection. However, whether or not the pneumonia related deaths in the .csv file was
caused by an influenza infection is not known as an absolute.

The format of the National_Custon_Data.csv file is similar but not identical to the infection rate
files. The code below reads in the semi-raw data and corrects the season data from a YYYY-YY
format to a YYYY-YYYY format. In addition the original file displayed numbers with commas
demarking the thousands place within a number (i.e. 1,347), which causes problems when the
computer reads the value. The commas are removed in order to simplify the process of reading
the data. The file is described as a semi-raw format since it was manually manipulated before
incorporating into this code repository in order to more easliy fix some chronological issues with
the raw format. The output file is titled US_Flu_Mortality.csv. In addition to the data-wrangling
mentioned in the paragraphs above, a date in the format mm/dd/yy is given to each week.

[3]: # Read National_Custom_Data.csv file
file = 'Data/Raw_Data/National_Custom_Data.csv'
columns = ['SEASON', 'WEEK', 'NUM INFLUENZA DEATHS',

'NUM PNEUMONIA DEATHS', 'TOTAL DEATHS',
'PERCENT P&I']

df = pd.read_csv(file, usecols=columns)

Replace SEASON Dates
season = []
for i in range(len(df)):

one = df['SEASON'][i][0:5]
two = df['SEASON'][i][5:7]
val = str(one) + '20' + two
season.append(val)

df['SEASON'] = season
df['NUM PNEUMONIA DEATHS'] = df['NUM PNEUMONIA DEATHS'].str.replace(',', '')
df['NUM INFLUENZA DEATHS'] = df['NUM INFLUENZA DEATHS'].str.replace(',', '')
df['TOTAL DEATHS'] = df['TOTAL DEATHS'].str.replace(',', '')

Add date range
dates = pd.date_range(start='09/23/13', end='03/01/20', freq='W').strftime('%m/
↪→%d/%y')

df['DATE'] = dates
df.to_csv('Data/Processed_Data/US_Flu_Mortality.csv', index=False)

16

https://gis.cdc.gov/grasp/fluview/mortality.html

1.5.3 COVID-19 Infection and Mortality Database

The existance of the SARS-Cov-2 virus has only recently become public knowledge and the num-
ber of people who are known to be infected is changing daily. The Johns Hopkins University
has compiled a database of all known or suspected infections, deaths, and recovered personal
due to the COVID-19 virus. The database is a compilation of information collected from the
World Health Organization (WHO) and the U.S. Center fro Disease Control (USCDC) and is
published on GitHub. The GitHub repository consists of summary reports and a time series
database, which is used for this analysis. The time series database consists of three .csv files
of the exact same format. One file titled time_series_19-covid-Confirmed.csv contains the
list of known infections for every country and region by the date they were discovered, the
second file titled time_series_19-covid_Deaths.csv contains a list of all known deaths due
to the COVID-19 virus for every country and region by date. Finally, the third file titled
time_series_19-covid-Recovered.csv contains a list of all known persons to have recovered
from the COVID-19 infection by country and region as a function of date; however, this file will
not be used in this report. The format of the three COVID-19 files is very different than the
Influenza files; however, no changes are required to begin analysis.

1.6 Basics of Pathogen Analysis

In this analysis we will focus our attention on the number of infections as a function of time and
the number of fatalities as a function of time. In both cases we will evaluate the number of new
infections or deaths per unit time and develop some basic metrics that help us conduct a simplistic
analysis on the progression of a pathogen. The plot of infections per unit time as a function of
time, most often assumes a Gaussian or Maxwellian distribution; however, in this case we will
assume that the data conforms to a Gaussian profile. A guassian infection rate pulse is evaluated
on a number of metrics, the first of which is rp, which represents the peak infection rate, which is
displayed as the maximum point on the Gaussian curve in the figure below. The figure shows a
blue curve which represents the number of new infections diognosed per week as a function of time.
This plot is commonly referred to as the Probability Distribution Function (PDF).

17

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Maxwell–Boltzmann_distribution
https://en.wikipedia.org/wiki/Normal_distribution

People are infected with the influenza virus throughout the year; however, for most of the time,
the number of cases reported per week is within a statistical steady state value. However, during
the time frame of early spring, when the temperatures are cooler, the virus is able to flourish and
the number of cases increases above a statistical threshold to a peak value (rp). In order to ensure
that the flu season is not assumed to have begun prematurely, a threshold value must be choosen
that will represent a barrier that the number of new cases must exceed before a new flu season
or outbreak is assumed. This study will assume an outbreak or flu-season threshold of 10%rp,
which conforms to terminology in other statistical fields that must consider Gaussian trends. The
geometric growth period rg is the growth that happens between the 10%rp and 90%rp values. The
growth period, sometimes referred to as the rise time (rt) is measured as the time that elapses
between the 10%rp and 90%rp values. Following the end of the groth period, the trend begins to
inflect and eventually the number of new cases recorded per week begins to decrease. Finally, the
outbreak duration, sometimes referred to as the pulse width is the time that evolves between the
10%rp value during the rise time and the same value on the decay side of the pulse.

The integral of the infection rate as a function of time will produce the plot of cumulative infections
as a function of time. This trend, typically follows an S-curve geometry and is shown in the figure
below. THis plot is commonly referred to as the Cumulative Distribution Function (CDF).

18

Another metric that is very useful for comparison between pathogens is the exponential factor (λ)
and the doubling time (td). A typical flu season or pathogen outbreak increases in magnitude at
an exponential rate. Within a period of days the number of infected persons can double, triple or
even quadruple, before the outbreak is contained. We can model this exponenital increase with the
equation below where A is the population of infected persons at the beginning of an outbreak and
B represents the number of infected persons after time t, and exp represents the exponential term
e.

B = Aexp(λt) (3)

The term λ helps mathematical determine the rate at which a pathogen outbreak progresses.
However, we can re-write the equation to describe the amount of time it takes for the population
to double.

t2 = ln (2)/λ (4)

The value of λ and t2 are typically determined on the CDF from the 10% to 90% rise time locations.

1.7 Influenza Analysis

1.7.1 Influenza Probability Distribution Functions

The U.S. Center for Disease Control estimates that every year between 39 and 200 million American
are infected with the flu, which normally consists of the H1 and H3 variants of the A virus, the

19

B-virus, to include its Yamagoto and Victoria strains, as well as the H1N1 and H3V2 variants of
the pathogen. While millions of American’s are infected, the symptoms felt by most are so minor
that most do not seek medical attention and are therefore not officially diagnosed. Regardless,
we can still learn allot by evaluating the database for those who were officially diagnosed. The
following code snippet mines the US_Flu_Infections.csv database for the number of weekly
diagnosed infections ranging from the 1997-1998 flu season untl the current 2019-2020 flu season.
When plotted, the diognoses rate constitutes a probability distribution function which is plotted
in a figure below. While there are some variations on the infectious period, it is clear that most
flu seasons begin around late February, peak in early June and end by September, and for the
most part follows a Gaussian distribution. The 2008-2009 and 2009-2010 seasons represent a rare
outbreak of the H1N1 strain of the virus, and the 2014-15 season also represents an outbreak above
and beyond that of an average flu season.

[4]: # Instantiate class to read database
flu = ProcessFluInfections('Data/Processed_Data/US_Flu_Infections.csv')

Determine how many unique seaons exist in the database and their names
total_df = flu.read_data()
seasons = np.array(list(total_df['SEASON']), str)
seasons = np.unique(seasons)

Create a list of data-frames, one for each season
df = [flu.filter_by_season(seas) for seas in seasons]

- The influenza dataframes contain a column for each type of flu,
we will now create a colum that accounts for all influenza
infections
for i in range(len(df)):

df[i]['Total Infections'] = df[i]['A (H1+H3)'] + df[i]['H3N2v'] + df[i]['A␣
↪→(2009 H1N1)'] + \

df[i]['B (B+BVic+BYam)']

Create parameters required for plotting
dates = [convert_to_m_d(data) for data in df]
colors = ['red', 'blue', 'black', 'orange', 'brown',

'purple', 'green', 'olive', 'gray', 'pink',
'red', 'blue', 'black', 'orange', 'brown',
'purple', 'green', 'olive', 'gray', 'pink',
'red', 'blue', 'black']

linestyles = np.repeat('-', 10)
lines = np.array(['-.', '-.', '-.'])
linestyles = np.concatenate((linestyles, np.repeat('--', 10)))
linestyles = np.concatenate((linestyles, lines))

Plot data
plt.rcParams["figure.figsize"] = (10, 7)
fig, td_plot = plt.subplots()

20

td_plot.set_xlabel('Month', fontsize=18)
td_plot.set_ylabel('Infections per Week', fontsize=18)
td_plot.set_title('Influenza Infections', fontsize=22)
td_plot.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
for i in range(len(df) - 1):

td_plot.plot(dates[i], df[i]['Total Infections'], color=colors[i],
linestyle=linestyles[i], label=seasons[i])

plt.legend(ncol=2)
plt.show()
plt.close()

1.7.2 Peak Infection Rates

We can now process the database to determine the peak number of weekly infections that occured
in each flu season (rp). It appears that the 2014-2015 season produced the highest number, with
a peak value of 13,798 infections in one week. On the other hand, the 2002-2003 year produced
the lowest peak weekly infection value of 1,285 infections in one week. From this data we will use
the average peak value for rp to use in the determination of the 0.1rp and 0.9rp values. The data
shows an average peak infection rate of 4315 infections per week, which results in a 0.1rp value of
431 infections per week. The 0.9rp value will be 431 infections less than the peak value in that flu
season. It should be noted that the 2019-2020 flu season is still in progress, and will likely not peak

21

until early June.

[5]: # Drop the 2019-2020 flu season since it is strill in progress
total = [max(df[i]['Total Infections']) for i in range(len(df) - 1)]
new_seasons = [seasons[i] for i in range(len(df) - 1)]

data = {'Season': new_seasons, 'rp (infec/week)': total}
display(pd.DataFrame(data))
print('')
print('{}{:7.2f}'.format('Average Peak Weekly Flu Infections: ', int(np.
↪→average(total))))

print('{}{:7.2f}'.format('Maximum Peak Weekly Flu Infections: ', np.max(total)))
print('{}{:7.2f}'.format('Minimum Peak Weekly Flu Infections: ', np.min(total)))

Season rp (infec/week)
0 1997-1998 1889
1 1998-1999 1860
2 1999-2000 2151
3 2000-2001 1330
4 2001-2002 1833
5 2002-2003 1285
6 2003-2004 4090
7 2004-2005 2705
8 2005-2006 1802
9 2006-2007 2532
10 2007-2008 5277
11 2008-2009 6140
12 2009-2010 12409
13 2010-2011 5716
14 2011-2012 2710
15 2012-2013 7602
16 2013-2014 5187
17 2014-2015 13798
18 2015-2016 3274
19 2016-2017 3482
20 2017-2018 4538
21 2018-2019 3326

Average Peak Weekly Flu Infections: 4315.00
Maximum Peak Weekly Flu Infections: 13798.00
Minimum Peak Weekly Flu Infections: 1285.00

1.7.3 Influenza Rise Time

The following code will determine the rise time for each season, which is defined as the time that
elapses between the 10% pulse height and the 90% pulse height. This term defines hte length of the

22

unmitigated outbreak phase. Following the 90% pulse height location, the rate at which the number
of infections is increasing on a per week basis begins to decrease, until the trend goes negative at
the peak heigh time. The pulse rise times vary from 14 days to 161 days, with 63 days being the
average. The plot below is one where a small value indicates a very infectous disease.

[6]: def rise_time(threshold: int, df: pd.DataFrame) -> int:
"""

:param threshold: The threshold number of infections in a one
week timeframe that can be used as the estimate
for the outbreak beginning date and end date

:param df: A pandas dataframe containing a date index and
a 'Total Infections' column

:return days: The pulse rise time in days
"""
peak_value = max(df['Total Infections'])
for i in range(len(df)):

if df['Total Infections'][i] >= threshold:
dat1 = df.index[i]
break

for i in range(len(df)):
if df['Total Infections'][i] >= peak_value - threshold:

dat2 = df.index[i]
return (dat2 - dat1).days

==
==

years = np.arange(1997, 2020)
rise = [rise_time(int(np.average(total)) / 10, df[i]) for i in range(len(df))]

fig, ax = plt.subplots()
dat = ax.bar(years, rise)
ax.set_ylabel('Rise Time (days)', fontsize=18)
ax.set_xlabel('Flu Season End Year', fontsize=18)
fig.tight_layout()
plt.show()
plt.close()
print('')
print('{}{:7.2f}'.format('Average Influenza Rise Time (days): ', int(np.
↪→average(rise))))

print('{}{:7.2f}'.format('Maximum Influenza Rise Time (days): ', np.max(rise)))
print('{}{:7.2f}'.format('Minimum Influenza Rise Time (days): ', np.min(rise)))

23

Average Influenza Rise Time (days): 63.00
Maximum Influenza Rise Time (days): 161.00
Minimum Influenza Rise Time (days): 14.00

1.7.4 Duration of Influenza Outbreaks

The following code will determine the length of each influenza outbreak (td) which is defined as the
time that elapses between the 10% pulse height on the rise side and the decay side of the pulse.
As can be seen in the code output, historical flu outbreaks have lasted anywhere from 56 days, to
266 days, where 120 days is the historical average duration. Interestingly, the outbreak length for
each flu season appears to be increasing as a function of time. These numbers can be important
in making data based estimates for the duration of future flu strains or flu like illnesses. While
future strains of influenza or other illnesses can be very different, these numbers are
helpful for societal planning during an outbreak.

[7]: def outbreak_length(threshold: int, df: pd.DataFrame) -> int:
"""

:param threshold: The threshold number of infections in a one
week timeframe that can be used as the estimate
for the outbreak beginning date and end date

24

:param df: A pandas dataframe containing a date index and
a 'Total Infections' column

:return days: The number of days that an outbreak lasts based
on a threshold infection rate

"""
for i in range(len(df)):

if df['Total Infections'][i] >= threshold:
dat1 = df.index[i]
break

j = len(df) - 1
for i in range(len(df)):

if df['Total Infections'][j] >= threshold:
dat2 = df.index[j]
break

j -= 1
return (dat2 - dat1).days

==
==

Execute the function with the flu infection database
flu_length = [outbreak_length(int(np.average(total)) / 10, df[i]) for i in␣
↪→range(len(df))]

fig, ax = plt.subplots()
dat = ax.bar(years, flu_length)
ax.set_ylabel('Flu Season Duration (days)', fontsize=18)
ax.set_xlabel('Flu Season End Year', fontsize=18)
#ax.set_yticks()
fig.tight_layout()
plt.show()
plt.close()

print('')
print('{}{:7.2f}'.format('Average Flu Outbreak Duration (days): ', int(np.
↪→average(flu_length))))

print('{}{:7.2f}'.format('Maximum Flu Outbreak Duration (days): ', np.
↪→max(flu_length)))

print('{}{:7.2f}'.format('Minimum Flu Outbreak Duration (days): ', np.
↪→min(flu_length)))

25

Average Flu Outbreak Duration (days): 120.00
Maximum Flu Outbreak Duration (days): 266.00
Minimum Flu Outbreak Duration (days): 56.00

1.8 Influenza Exponential Constant and Doubling Time

The code below is used to determine the values of λ and t2 for influenza outbreaks, which helps us
understand tha rate at which a pathogen reproduces and infects hosts. On average the influenza
virus is capable in doubling the number of infected patients once every 8 days; however, history
shows that it can double the number of diagnosed patients in as little as 2 days. The doubling
time presented in this analysis is just for those who were formally diagnosed. If the true number
of infected people were known along with the date they were infected, it is likely that the doubling
time would be shorted than what is presented in this analysis.

[8]: def exp_growth(threshold: int, df: pd.DataFrame) -> float:
"""

:param threshold: The threshold number of infections in a one
week timeframe that can be used as the estimate
for the outbreak beginning date and end date

:param df: A pandas dataframe containing a date index and

26

a 'Total Infections' column
:return _lambda: A metric that describes the rate at which the

number of known infections doubles
"""
peak_value = df['Total Infections'].max()
for i in range(len(df)):

if df['Total Infections'][i] >= threshold:
date1 = df.index[i]
break

for i in range(len(df)):
if df['Total Infections'][i] >= peak_value - threshold:

date2 = df.index[i]
break

new_df = df[(df.index >= date1) & (df.index <= date2)]
upper = new_df['Total Infections'].sum() - threshold
lower = threshold
_lambda = np.log((upper- threshold) / lower) / (date2 - date1).days
return _lambda

==
==

Execute function
_lambda = [exp_growth(int(np.average(total)) / 10, df[i]) for i in␣
↪→range(len(df))]

fig, ax = plt.subplots()
dat = ax.bar(years, np.log(2) / _lambda)
ax.set_ylabel('Doubling Time (days)', fontsize=18)
ax.set_xlabel('Flu Season End Year', fontsize=18)
#ax.set_yticks()
fig.tight_layout()
plt.show()
plt.close()

print('')
print('{}{:6.3f}{}'.format('Average Influenza Doubling Rate: ', np.log(2) / np.
↪→average(_lambda), ' days'))

print('{}{:6.3f}{}'.format('Peak Influenza Doubling Rate: ', np.log(2) / np.
↪→max(_lambda), ' days'))

print('{}{:6.3f}{}'.format('Minimum Influenza Doubling Rate: ', np.log(2) / np.
↪→min(_lambda), ' days'))

27

Average Influenza Doubling Rate: 8.790 days
Peak Influenza Doubling Rate: 2.279 days
Minimum Influenza Doubling Rate: 21.996 days

1.8.1 Cumulative Distribution Function

Instead of generating the time dependant cumulative distribution, the total number of diagnosed
infections in a flu seas is determined with the total_numbers() python function below and plotted
as a function of time. The data is plotted as a bar chart as a function of flu season, where each
year represents the year that the plotted flu season ended. The data indicates that on average
approximately 42,000 American are diagnosed with influenza every year, with a peak number of
128,000 diagnosed infections in the 2014-2015 flu season. The author of this report strongly urges
the reader to remember that these are only the diagnosed infections. Each flu season likely has
many un-diagnosed cases for each diagnosed case.

[9]: def total_numbers(df: pd.DataFrame) -> int:
"""

:param df: A pandas dataframe containing total number
of infections

:return summation: The total number of infections

28

"""
return df['Total Infections'].sum()

==
==

Execute function
cumulative = [total_numbers(df[i]) for i in range(len(df))]
years = np.arange(1997, 2020)

Plot data
fig, ax = plt.subplots()
dat = ax.bar(years, cumulative)
ax.set_ylabel('Diagnose Infections', fontsize=18)
ax.set_xlabel('Flu Season End Year', fontsize=18)
#ax.set_yticks()
fig.tight_layout()
plt.show()
plt.close()
print('')
print('{}{:6.3f}'.format('Average Diagnosed Flu Infections: ', np.
↪→average(cumulative)))

print('{}{:6.3f}'.format('Peak Diagnose Flue Infections: ', np.
↪→max(cumulative)))

print('{}{:6.3f}'.format('Minimum Diagnose Flu Infections : ', np.
↪→min(cumulative)))

29

Average Diagnosed Flu Infections: 42016.826
Peak Diagnose Flue Infections: 128915.000
Minimum Diagnose Flu Infections : 9841.000

1.8.2 Mortality Analysis

The CDC maintains the influenza database with the number of deaths that are known to have been
caused by the flu as well as the total number of pneumonia related deaths, ostencibly because some
fraction of the pneumonia deaths occured as a side effect to an influenza infection. The plot below
shows an overlay of the number of diagnose influenza patients on a per week basis with the number
of pneumonia and influenza (P&I) related deaths, also on a per week basis. The plot below the
overlaid plot demonstrates the fraction of all deaths that occur in the United States due to P&I
related illnesses on a per wekk basis.

[10]: # Read in the mortality database
flu2 = ProcessFluMortality('Data/Processed_Data/US_Flu_Mortality.csv')
total_df2 = flu2.read_data()

Prepare relevant aspects of infection and mortality databases for analysis
total_df2['Total P&I Deaths'] = total_df2['NUM INFLUENZA DEATHS'] +␣
↪→total_df2['NUM PNEUMONIA DEATHS']

30

total_df['Total Infections'] = total_df['A (H1+H3)'] + total_df['H3N2v'] +␣
↪→total_df['A (2009 H1N1)'] + \

total_df['B (B+BVic+BYam)']

Create dataframes of the same size
mask = (total_df.index > '2013-09-22') & (total_df.index <= '2020-03-01')
new_df = total_df[mask]

Combine relevant aspects of both dataframes into one
data = {'Date': new_df.index, 'Infections': new_df['Total Infections'],

'Deaths': total_df2['Total P&I Deaths']}
final_df = pd.DataFrame(data)
final_df['Date'] = pd.to_datetime(final_df['Date'])
final_df = final_df.set_index('Date')

Plot data
plt.rcParams["figure.figsize"] = (10, 7)
fig, td_plot = plt.subplots()
td_plot.set_xlabel('Date', fontsize=18)
td_plot.set_ylabel('Number', fontsize=18)
td_plot.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
td_plot.plot(final_df.index, final_df['Deaths'], color='red',

linestyle='-', label='P&I Deaths')
td_plot.plot(final_df.index, final_df['Infections'], color='blue',

linestyle='-', label='Diagnosed Infections')
plt.legend()
plt.show()
plt.close()

plt.rcParams["figure.figsize"] = (10, 7)
fig, td_plot = plt.subplots()
td_plot.set_xlabel('Date', fontsize=18)
td_plot.set_ylabel('Deaths due to P&I (%)', fontsize=18)
td_plot.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
td_plot.plot(total_df2.index, total_df2['PERCENT P&I'], color='red',

linestyle='-')
plt.show()
plt.close()

31

32

There is obviously a correlation between the number of diagnosed influenza patients and the number
of deaths that occur to pneumonia and influenza related symptoms. Below we run a correlation
on the two trends and find that they are firmly correlated with a correlation value of 0.766. This
correlation is largely driven by the inflection points of the two trends, however, the geometry is not
identical, which is why the value is firm, but still only 0.766. As we see the number of diagnosed flu
patients essentially reaches zero near the end of each year, which helps us understand that number
of P&I deaths during the same time frame probably has little to do with influenza. The inflection
point in P&I deaths at the end of each year ranges from approximately 5% to 6.5% of all fatalities,
and the value seems to be decreasing as a function of time. For this study we will assume the
average value of 5.46%, which means that on average 5.46% of all P&I deaths are unrelated to
Influenza and all deaths above that percentage will be assumed as being related to the flu.

[11]: print('The correlation factor between infections and deaths is shown below')
display(final_df.corr())
Determine which seasons are in the database
seasons2 = list(np.unique(total_df2['SEASON']))

Create mortality dataframe for each flu season
mort = [flu2.filter_by_season(seasons) for seasons in seasons2]

Determine minimum percentage in each season
minimum = [dataframe['PERCENT P&I'].min() for dataframe in mort]

print('{}{:4.2f}{}'.format("The Average Minima is: ", np.average(minimum), "␣
↪→%"))

print('{}{:4.2f}{}'.format("The Minima sigma is. : ", np.std(minimum), " %"))
Find local peaks

The correlation factor between infections and deaths is shown below

Infections Deaths
Infections 1.000000 0.765705
Deaths 0.765705 1.000000

The Average Minima is: 5.46 %
The Minima sigma is. : 0.37 %

The following code subtracts 5.46% from all P&I deaths as a representation of deaths that have
a high probability of having been caused by influenza. The numbers range from a low value in
the 2018-2019 flu season of 23,017 fatalities to a high value in the 2014-2015 season of 51,241
deaths. The 2019-2020 flu season is still in progress so it is not considered in the totals. The figures
presented in the figure below only represent nominal figures, in reality the actualy death toll could
vary by values that range from 9,525 to 10,444 deaths, depending on the year. Unfortunately since
many pneumonia related deaths were not correctly attributed to influenza, it is impossible to put
together a meaningful case fatality rate Pd and the rates appear to range from 20% to 119%, which
obviously cannot be correct. All we can draw from this data is that there are between 13,000 to

33

61,000 deaths annualy in the United States due to influenza, which accounts for approximately 5.09
to 5.83 % of all deaths in the country each year.

[12]: def influenza_deaths(df: pd.DataFrame, threshold: int,
uncertainty: int) -> pd.DataFrame:

"""

:param df: A pandas dataframe containing mortality
related information

:param threshold: The trheshold for what deaths should
not be considered

:param uncertainty: The uncertainty in the mortality
threshold

:return df: A dataframe containing the number of
flu related deaths and the uncertainty
in the mortality estimate

"""
total = []
unc = []
for i in range(len(df)):

if df["PERCENT P&I"][i] - threshold<= 0.0:
percent = 0

else:
percent = df["PERCENT P&I"][i] - threshold

total.append(int(percent / 100 * df["TOTAL DEATHS"][i]))
unc.append(int(uncertainty/100 * df["TOTAL DEATHS"][i]))

total = np.array(total, int)
unc = np.array(unc, int)
df["Influenza Deaths"] = total
df["Uncertainty"] = unc
return df

==
==

mortality = [influenza_deaths(mortality, 5.46, 0.37) for mortality in mort]

Determine how many influenza related deaths occur each season
total_deaths = [dat["Influenza Deaths"].sum() for dat in mortality]
uncertainty = [dat["Uncertainty"].sum() for dat in mortality]

fig, ax = plt.subplots()
dat = ax.bar(seasons2, total_deaths)
ax.set_ylabel('Flu Deaths', fontsize=18)
ax.set_xlabel('Flu Season', fontsize=18)
#ax.set_yticks()
fig.tight_layout()
plt.show()

34

plt.close()

print('')
print('{}{:8.2f}'.format("Average Num Flu Deaths Per Year: ", np.
↪→average(total_deaths)))

Develop estimate of case fatality rate
cases = np.array(cumulative[16:], int)
total = np.array(total_deaths, int)
data = {'Season': seasons2, 'Case Fatality Rate': total_deaths / cases,

'Deaths': total_deaths}
display(pd.DataFrame(data))

Average Num Flu Deaths Per Year: 34531.43

Season Case Fatality Rate Deaths
0 2013-2014 0.785791 46353
1 2014-2015 0.397479 51241
2 2015-2016 1.194516 34328
3 2016-2017 0.791945 34490
4 2017-2018 0.752846 41393
5 2018-2019 0.501635 23017

35

6 2019-2020 0.272062 10898

1.9 SARS-Cov-2 Analysis

1.10 SARS Infection Rate Probability Distribution Function

The SAR-Cov-2 virus is still in the early phases of its infectious profile, which makes it imposible
to build a complete PDF from the data. However, what we can do is display the number of new
infections on a day by day basis. Once the infection progresses further we can start to view it on a
weekly basis in order to better compare it with influenza. However, there are some factors that will
inherently make the analysis different. Early on in the infection profile of SARS-Cov-2, there was
very limited testing capability around the globe, so it is likely that the early number of diagnosed
infections per day will be below that of Influenza. However, SARS-Cov-2 has become headline
news across the globe, so it is likely that once testing begins in full swing, a larger fraction of the
population will undergo testing, which will likely lead to a much higher rate of diagnosed cases
than for influenza. This does not nessarily mean that there are more or less SARS-Cov-2 infections
than influenza, just that a larger fraction of the infected population is getting tested. However,
early results do indicate that SARS-Cov-2 is more than twice as infectuous of the common strains
of influenza, as is discussed in this NPR article. The plot shown below shows the number of daily
infections for the countries most affected by the virus, which are mostly in Europe and the United
States. At present, the United States is diagnosing approximately 20,000 new SARS-Cov-2 patients
per day. Within the United States the number of new infections per day seems to be decreasing
with a linear trend, where the number of daily infections varies stochasticaly around the mean
value. As with Europe, the number of new daily infections in the United States seems to have
plateaued and is fluctuating within statistical bounds on a daily basis.

[13]: # Read in the confirmed infection database
cov = ProcessCovidData('Data/Raw_Data/time_series_19-covid-Confirmed.csv')

countries = ['US', 'China', 'Italy', 'France', 'Germany', 'Korea, South',
'United Kingdom', 'Australia', 'Iran', 'Spain', 'Switzerland',
'Netherlands', 'Belgium', 'Norway', 'Canada', 'Sweden',
'Denmark', 'Portugal']

infect = [cov.country_cases_per_day(country, start_date, end_date) for country␣
↪→in countries]

current_date = pd.datetime.now().strftime('%b-%d')

Create parameters required for plotting
colors = ['red', 'blue', 'black', 'orange', 'brown',

'purple', 'green', 'olive', 'gray', 'pink',
'red', 'blue', 'black', 'orange', 'brown',
'purple', 'green', 'olive', 'gray', 'pink',
'red', 'blue', 'black']

linestyles = np.repeat('-', 10)
lines = np.array(['-.', '-.', '-.'])
linestyles = np.concatenate((linestyles, np.repeat('--', 10)))

36

https://www.npr.org/sections/goatsandsoda/2020/03/20/815408287/how-the-novel-coronavirus-and-the-flu-are-alike-and-different

linestyles = np.concatenate((linestyles, lines))
ttle = str(current_date) + " SARS-Cov-2 Analysis"
plt.rcParams["figure.figsize"] = (10, 7)
fig, td_plot = plt.subplots()
td_plot.set_xlabel('Date', fontsize=18)
td_plot.set_ylabel('Infections per Day', fontsize=18)
td_plot.set_title(ttle, fontsize=18)
td_plot.xaxis.set_major_formatter(mdates.DateFormatter('%d-%b'))
for i in range(len(infect)):

td_plot.plot(infect[i].index, infect[i], color=colors[i],
linestyle=linestyles[i], label=countries[i])

td_plot.xaxis.set_major_locator(mdates.WeekdayLocator(interval=1))
plt.legend(loc=2, ncol=2)
plt.show()
plt.close()

The above plot confirms that the time required for the diseases to spread from China to the rest
of the world was approximately 3 months. The plot seems to indicate that there was a drop in
the infection rate in late January; however, this is unlikely, and the drop most likely indicates a
testing shortage during that time frame. Countires should not be compared on the total number of
daily infections, but on the fraction of the population infected, as larger countries with high total
populations and higher population densities will understandably have higher values. In the plot

37

below we compare infection rates in countries normalized to their populations. The United States
does appear to be one of the worst affected countries when normalized to population, which worse
rates only in France, Spain and Belgium. If the average outbreak duration for a typical flu season
is used as the standard, it implues that we may have about another 30 days of values existing at
their plateau before we see large drops in numbers.

[14]: population = {'US': 327200000.0, 'China': 1386000000.0, 'Italy': 60480000.0,␣
↪→'France': 66990000.0,

'Germany': 82790000.0, 'Korea, South': 51470000.0, 'United␣
↪→Kingdom': 66440000.0,

'Australia': 24600000.0, 'Iran': 81160000.0, 'Spain': 44660000.0,
'Switzerland': 85700000.0, 'Netherlands': 17180000.0, 'Belgium':␣

↪→11400000.0,
'Norway': 5368000.0, 'Canada': 37590000.0, 'Sweden': 10120000.0,␣

↪→'Denmark': 5603000.0,
'Portugal': 10290000.0}

countries = ['US', 'China', 'Italy', 'France', 'Germany', 'Korea, South',
'United Kingdom', 'Australia', 'Iran', 'Spain', 'Switzerland',
'Netherlands', 'Belgium', 'Norway', 'Canada', 'Sweden',
'Denmark', 'Portugal']

plt.rcParams["figure.figsize"] = (10, 7)
fig, td_plot = plt.subplots()
td_plot.set_xlabel('Date', fontsize=18)
td_plot.set_ylabel('% Population Infected per Day', fontsize=18)
td_plot.set_title(ttle, fontsize=18)
td_plot.xaxis.set_major_formatter(mdates.DateFormatter('%d-%b'))
for i in range(len(infect)):

td_plot.plot(infect[i].index, (infect[i] / population[countries[i]]) * 100,␣
↪→color=colors[i],

linestyle=linestyles[i], label=countries[i])
td_plot.xaxis.set_major_locator(mdates.WeekdayLocator(interval=1))
plt.legend(ncol=2)
plt.show()
plt.close()

38

The data shown for China seems to be highly Unusual. The disease started in China, and China
has the largest population in the world, which would make one believe China should have the worst
rates, which is contrary to the provided data. It is highly likely that the Chinese government is not
being honest with the infection numbers, as well as the death rates.

[15]: plt.rcParams["figure.figsize"] = (10, 7)
fig, td_plot = plt.subplots()
td_plot.set_xlabel('Date', fontsize=18)
td_plot.set_ylabel('Total % of Population Infected', fontsize=18)
td_plot.set_title(ttle, fontsize=18)
td_plot.xaxis.set_major_formatter(mdates.DateFormatter('%d-%b'))
for i in range(len(infect)):

td_plot.plot(infect[i].index, (infect[i].cumsum() /␣
↪→population[countries[i]]) * 100, color=colors[i],

linestyle=linestyles[i], label=countries[i])
td_plot.xaxis.set_major_locator(mdates.WeekdayLocator(interval=1))
plt.legend(ncol=2)
plt.show()
plt.close()

39

1.10.1 Duration of SARS-Cov-2 Outbreak

Thus far, China is the only country that appears to have completed an entire outbreak period;
however, it is the author’s opinion that the data coming from China may not be totally accurate.
Regardless, we analyze the Chinese data to develop an estimate fo the outbreak duration td to find
a value of 21 days. It should be noted that China completely locked down their country and put
everyone in the Hebei province on quarantine to contain the outbreak. In the absense of a complete
lockdown it is likely that an outbreak will last longer.

[16]: def outbreak_length(threshold: int, df: pd.DataFrame) -> int:
"""

:param threshold: The threshold number of infections in a one
week timeframe that can be used as the estimate
for the outbreak beginning date and end date

:param df: A pandas dataframe containing a date index and
a 'Total Infections' column

:return days: The number of days that an outbreak lasts based
on a threshold infection rate

"""

40

for i in range(len(df)):
if df[i] >= threshold:

dat1 = df.index[i]
break

j = len(df) - 1
for i in range(len(df)):

if df[j] >= threshold:
dat2 = df.index[j]
break

j -= 1
return (dat2 - dat1).days

==
==

duration = outbreak_length(infect[1].max() / 10.0, infect[1])
print('{}{}{}'.format('Chinese Outbreak Duration: ', duration, ' days'))

Chinese Outbreak Duration: 21 days

1.10.2 SARS-Cov-2 Exponential Factor and Doubling Time

In most countries the SARS-Cov-2 outbreak is still developing; however, there is enough data to
start estimating the exponential factor λ and the doubling time t2. The exponential factor and
doubling time for each country are shown in the table below. The fastest influenza doubling time in
the U.S. since 1997 was 2.27 days; however, the fraction of those infected with influenza and SARS-
Cov-2 who were diagnosed is not known and it is likely that the fractions for the two illnesses is
different. Until mid-March there was very limited testing capability in the United States; however,
now that testing has began in the U.S. the number of people being diagnosed per day is hyper
inflated compared to the number who were infected each day. This will make the current estimates
for doubling time much lower than they should be, and indeed the doubling time in the United
States has been getting longer for the past three days and this trend is expected to continue.
Currently the doubling time for the United States is 2.52 days.

[17]: def exp_growth2(df: pd.DataFrame) -> float:
"""

:param threshold: The threshold number of infections in a one
week timeframe that can be used as the estimate
for the outbreak beginning date and end date

:param df: A pandas dataframe containing a date index and
a 'Total Infections' column

:return a_lambda: A metric that describes the rate at which the
number of known infections doubles

"""
peak_value = df.max()
threshold = peak_value * 0.1
for i in range(len(df)):

41

if df[i] >= threshold:
date1 = df.index[i]
break

for i in range(len(df)):
if df[i] >= peak_value - threshold:

date2 = df.index[i]
break

new_df = df[(df.index >= date1) & (df.index <= date2)]
upper = new_df.sum() - threshold
lower = threshold
_lambda = np.log((upper- threshold) / lower) / (date2 - date1).days
return _lambda

countries = ['US', 'China', 'Italy', 'France', 'Germany', 'Korea, South',
'United Kingdom', 'Australia', 'Iran', 'Spain', 'Switzerland',
'Netherlands', 'Belgium', 'Norway', 'Canada', 'Sweden',
'Denmark', 'Portugal']

growth = [exp_growth2(inf) for inf in infect]

data = {'Country': countries, 'Doubling Time (days)': np.log(2) / growth,
'Lambda': growth}

display(pd.DataFrame(data).sort_values(by=['Doubling Time (days)']))

Country Doubling Time (days) Lambda
5 Korea, South 1.575219 0.440032
10 Switzerland 1.763804 0.392984
7 Australia 1.901584 0.364510
9 Spain 2.159744 0.320939
4 Germany 2.215651 0.312841
2 Italy 2.490713 0.278293
0 US 2.522728 0.274761
14 Canada 2.640138 0.262542
13 Norway 3.062272 0.226351
1 China 3.102785 0.223395
11 Netherlands 3.287605 0.210837
6 United Kingdom 3.318759 0.208857
17 Portugal 3.332605 0.207990
16 Denmark 3.779670 0.183388
3 France 3.831111 0.180926
12 Belgium 3.852480 0.179922
8 Iran 3.933965 0.176196
15 Sweden 5.749290 0.120562

42

1.10.3 SARS-Cov-2 Mortality Analysis

The case fatality rate is defined as the number of confirmed deaths divided by the number of
diagnosed patients. The case mortality rate is expected to change as a larger number of patients
become diagnosed with SARS-Cov-2. Normally the case mortality rate is expected to decrease as
a function of time; however, the SARS-Cov-2 database shows the opposite trend. Most countries,
with exception of Austrialia and the United States indicate a mortality rate that is increasing with
time. This is an unexpected trend; however, we are still early in the progression of this illness, and
the trends for most countries are still expected to decrease. At present Belgium has the highest
case mortality rate of 16.37%, and Australia has the lowest rate of 1.40%. Currently the United
States has a mortality rate of 6.02% and that number seems to be holding steady over time. Spain
and Italy are tourist destinations and it is possible the virus was firmly embedded within those
societies before its existance was made widely known. Due to a low birth rate, it is possible that
the age distribution in Spain and Italy also play a role in the high infection and mortality rates
as well as genetic and behavioral aspects indicitive to those nations; however, at present this is
speculative. As predicted yesterday, the case fatality rate in the United States has increased. This
trend is expected to continue for up to a week. The trend of increasing case fatality rate with time
would imply that there is a forward peaked distribution of time to death from date of diagnosis.

[18]: countries = ['US', 'China', 'Italy', 'France', 'Germany', 'Korea, South',
'United Kingdom', 'Australia', 'Iran', 'Spain', 'Switzerland',
'Netherlands', 'Belgium', 'Norway', 'Canada', 'Sweden',
'Denmark', 'Portugal']

infect = [cov.total_cases_by_country(country, start_date, end_date) for country␣
↪→in countries]

Create databases of total deaths by country
cov2 = ProcessCovidData('Data/Raw_Data/time_series_19-covid-Deaths.csv')
deaths = [cov2.total_cases_by_country(country, start_date, end_date) for␣
↪→country in countries]

plt.rcParams["figure.figsize"] = (10, 7)
fig, td_plot = plt.subplots()
td_plot.set_xlabel('Date', fontsize=18)
td_plot.set_ylabel('Case Mortality Rate %', fontsize=18)
td_plot.xaxis.set_major_formatter(mdates.DateFormatter('%d-%b'))
td_plot.set_xlim(datetime(2020, 3, 1, 00), datetime(2020, 5, 17))
td_plot.set_title(ttle, fontsize=20)
td_plot.set_ylim(0.0, 17.0)
for i in range(len(infect)):

td_plot.plot(infect[i].index, (deaths[i] / infect[i]) * 100,␣
↪→color=colors[i],

linestyle=linestyles[i], label=countries[i])
td_plot.xaxis.set_major_locator(mdates.WeekdayLocator(interval=1))
plt.legend(ncol=2)
plt.show()

43

plt.close()

total_deaths = []
total_infections = []
total_mortality = []
for i in range(len(deaths)):

infct = infect[i][len(infect[0]) - 1]
dth = deaths[i][len(deaths[i]) - 1]
total_infections.append(infct)
total_deaths.append(dth)
total_mortality.append((dth * 100)/ infct)

data = {'Country': countries, 'Infections': total_infections,
'Deaths': total_deaths, 'Case Fatality Rate %': total_mortality}

mortality_rate = pd.DataFrame(data)
display(mortality_rate.sort_values(by=['Case Fatality Rate %']))

Country Infections Deaths Case Fatality Rate %
7 Australia 7054 99 1.403459
5 Korea, South 11065 263 2.376864
13 Norway 8249 232 2.812462
17 Portugal 29036 1218 4.194793

44

4 Germany 176369 7962 4.514399
16 Denmark 11125 547 4.916854
1 China 84054 4638 5.517881
8 Iran 120198 6988 5.813741
0 US 1486757 89562 6.023984
10 Switzerland 30587 1881 6.149671
14 Canada 78332 5903 7.535873
9 Spain 230698 27563 11.947655
15 Sweden 30143 3679 12.205155
11 Netherlands 44195 5699 12.895124
2 Italy 225435 31908 14.153969
6 United Kingdom 244995 34716 14.170085
3 France 179693 28111 15.643904
12 Belgium 55280 9052 16.374819

1.11 Conclusions

At this point in time there is too much fluctiation in the SARS-Cov-2 information to make com-
parisons against the influenza infection. What we do know is that the infection seems to spread
apprxoimately twice as fast as the influenza virus and in the most optimistic case it has a case mor-
tality rate roughly twice that of the influenza virus. Once the trends in the SARS-Cov-2 infection
period begin to stabilize we will be able to calculate the statistical range of possible infections and
fatalities in the United States as well as elsewhere in the world. Until that point, people should
not panic and instead take precautions to minimize their potential for acquiring the virus.

45

	Comparison of Infection Rates and Mortality Rates between Influenza and SARS-Cov-2 in the United States
	Introduction
	Background
	Purpose of this Study
	Package Imports and General Code
	Databases
	Influenza Infection Rates
	Influenza Mortality Rates
	COVID-19 Infection and Mortality Database

	Basics of Pathogen Analysis
	Influenza Analysis
	Influenza Probability Distribution Functions
	Peak Infection Rates
	Influenza Rise Time
	Duration of Influenza Outbreaks

	Influenza Exponential Constant and Doubling Time
	Cumulative Distribution Function
	Mortality Analysis

	SARS-Cov-2 Analysis
	SARS Infection Rate Probability Distribution Function
	Duration of SARS-Cov-2 Outbreak
	SARS-Cov-2 Exponential Factor and Doubling Time
	SARS-Cov-2 Mortality Analysis

	Conclusions

